Skip to main content

Distribusi Binomial

Sering dalam berbagai macam permasalahan peluang hanya memiliki dua kemungkinan hasil atau dapat disederhanakan menjadi dua kemungkinan. Sebagai contoh, ketika suatu koin dilempar, maka kita akan mendapat angka atau gambar. Ketika seorang bayi lahir, maka seorang bayi tersebut merupakan bayi laki-laki atau perempuan. Dalam permainan bola basket, tim yang bermain bisa menang atau kalah. Keadaan benar/salah tersebut dapat dijawab dengan dua cara, yaitu benar atau salah. Kondisi-kondisi lainnya dapat disederhanakan untuk menghasilkan dua kemungkinan. Sebagai contoh, suatu pengobatan medis dapat diklasifikasikan sebagai efektif atau tidak efektif, tergantung hasilnya. Seseorang dapat dikategorikan memiliki tekanan darah normal atau tidak normal, tergantung dari pengukuran tekanan darahnya. Pertanyaan-pertanyaan pilihan ganda, walaupun memiliki empat atau lima pilihan jawaban, dapat diklasifikasikan menjadi benar atau salah. Kondisi-kondisi yang telah dicontohkan tersebut dinamakan percobaan binomial.
Pada pembahasan ini kita akan membahas beberapa hal mengenai distribusi binomial, yaitu:
  • Percobaan binomial.
  • Pengertian distribusi binomial.
  • Rumus peluang binomial.
  • Menghitung peluang binomial dengan tabel.
  • Rata-rata, varians, dan simpangan baku untuk distribusi binomial.
Basket

Percobaan binomial merupakan suatu percobaan yang memenuhi empat syarat berikut:
  1. Terdapat n kali percobaan.
  2. Masing-masing percobaan hanya dapat menghasilkan dua kemungkinan, atau hasil yang diperoleh dapat disederhanakan menjadi dua kemungkinan. Hasil yang diperoleh tersebut dapat dianggap sebagai hasil yang sukses atau gagal.
  3. Hasil dari masing-masing percobaan haruslah saling bebas.
  4. Peluang untuk sukses harus sama untuk setiap percobaan.

Suatu percobaan binomial dan hasilnya memberikan distribusi peluang khusus yang disebut sebagai distribusi binomial.
Hasil-hasil percobaan binomial dan peluang yang bersesuaian dari hasil tersebut dinamakan distribusi binomial.
Dalam percobaan binomial, hasil-hasilnya seringkali diklasifikasikan sebagai hasil yang sukses atau gagal. Sebagai contoh, jawaban benar suatu pertanyaan pilihan ganda dapat diklasifikasikan sebagai hasil yang sukses, sehingga pilihan jawaban lainnya merupakan jawaban yang salah dan diklasifikasikan sebagai hasil yang gagal. Notasi-notasi yang umumnya digunakan dalam percobaan binomial dan distribusi binomial adalah sebagai berikut.
NotasiKeterangan
P(S)Simbol untuk peluang sukses.
P(F)Simbol untuk peluang gagal.
pPeluang sukes.
qPeluang gagal.
 P(S) = p dan P(F) = 1 – p = q
nBanyaknya percobaan
XBanyaknya sukses dalam n kali percobaan
Perhatikan bahwa 0 ≤ X ≤ n dan X = 0, 1, 2, 3, …, n.
Peluang sukses dalam percobaan binomial dapat dihitung dengan menggunakan rumus berikut.

Rumus Peluang Binomial
Dalam suatu percobaan binomial, peluang untuk mendapatkan tepat X sukses dalam npercobaan adalah
Rumus peluang binomial

Untuk mengetahui bagaimana ilustrasi dari rumus peluang binomial tersebut bermula, perhatikan Contoh 1 berikut.
Contoh 1: Melempar Koin
Suatu koin dilempar sebanyak tiga kali. Tentukan peluang mendapatkan tepat dua angka.
Contoh 1
Pembahasan Permasalahan ini dapat diselesaikan dengan melihat ruang sampelnya. Ruang sampel dari pelemparan satu koin sebanyak tiga kali adalah
S = {AAA, AAG, AGA, GAA, GGA, GAG, AGG, GGG}
Dari ruang sampel, kita dapat melihat bahwa ada tiga cara untuk mendapatkan tepat dua angka, yaitu AAG, AGA, dan GAA. Sehingga peluang kita mendapatkan tepat dua angka adalah 3/8 atau 0,375.
Dengan melihat kembali Contoh 1 dari sudut pandang percobaan binomial, maka contoh tersebut memenuhi keempat kriteria percobaan binomial.
  1. Terdapat tiga kali percobaan.
  2. Setiap percobaan hanya memiliki dua kemungkinan, yaitu angka (A) atau gambar (G).
  3. Hasil dari masing-masing percobaan saling bebas (hasil dari suatu pelemparan tidak mempengaruhi hasil pelemparan lainnya).
  4. Peluang percobaan sukses (angka) adalah ½ di setiap percobaannya.
Dalam kasus ini, n = 3, X = 2, p = ½, dan q = ½. Sehingga dengan mensubstitusi nilai-nilai tersebut ke dalam rumus, kita mendapatkan
P(2 angka)
Jawaban tersebut sama dengan jawaban kita sebelumnya yang menggunakan ruang sampel.
Contoh 1 tersebut juga dapat digunakan untuk menjelaskan rumus peluang binomial. Pertama, perhatikan bahwa terdapat tiga cara untuk mendapatkan tepat dua angka dan satu gambar dari delapan kemungkinan. Ketiga cara tersebut adalah AAG, AGA, dan GAA. Sehingga, dalam kasus ini banyaknya cara kita mendapatkan dua angka dari pelemparan koin sebanyak tiga kali adalah 3C2, atau 3. Secara umum, banyak cara untuk mendapatkanX sukses dari n percobaan tanpa memperhitungkan urutannya adalah
C(n, X)
Ini merupakan bagian pertama rumus binomial. (Beberapa kalkulator dapat digunakan untuk menghitung kombinasi tersebut).
Selanjutnya, masing-masing sukses memiliki peluang ½ dan muncul sebanyak dua kali. Demikian juga masing-masing gagal memiliki peluang ½ dan muncul sekali. Sehingga akan memberikan,
Bag 2 Rumus
pada rumus binomial. Sehingga apabila masing-masing percobaan sukses sukses memiliki peluang p dan muncul X kali serta peluang gagalnya adalah q dan muncul n – X kali, maka dengan menuliskan peluang percobaan sukses kita akan mendapatkan rumus binomial.
Semoga Bermanfaat ;)

Comments

Popular posts from this blog

Soal Psikotes

  Banyak orang-orang di Indonesia ingin menjadi seorang pegawai negeri sipil, karena katanya sih lebih menjamin masa depan meskipun gajinya sedikit tapi konstan dan saat masa tua ada uang pensiun sehingga nggak perlu khawatir kekurangan biaya finansial keluarga di masa mendatang. Ya nggak ada salahnya sih, karena orang memiliki persepsi masing-masing. Sama halnya seperti ibu saya. Setiap anaknya diwajibkan menjadi seorang pegawai negeri sampai-sampai setiap detik setiap menit nih saya selalu diingatkan untuk belajar karena sebentar lagi penerimaan calon pegawai negeri sipil akan dibuka... nggak heran ibu saya rela keluar uang banyak untuk membeli buku untuk kami belajar. Di rumah saya sudah ada sekita 10 buku penerimaan pegawai negeri sipil mulai sejak jaman buku tahun 2008 sampe sekarang wkwk. Tapi disini buat temen-temen yang nggak berkesempatan untuk membeli buku, saya bakal sharing soal-soal CPNS yang bersumber dari beberapa buku penerimaan CPNS yang ada di rumah saya. Sekarang...

Median Umur dalam Demografi

Median Umur             Untuk meringkas data statistik biasanya digunakan ukuran sentral rata-rata ataupun median. Distribusi umur penduduk umumnya jauh dari simetri ( skew ) dan sering pula berakhir dengan interval terbuka sehingga menyulitkan dalam perhitungan harga rata-rata. Secara umum, median adalah titik tengah data. Jika data diurutkan menurut besarnya maka sebelah bawah dan sebelah atas median tersebut masing-masing terdapat 50% data.             Data demografi umumnya dikelompokkan dalam selang umur 1 tahun, 5 tahun, atau 10 tahun, sehingga diperlukan rumus agar memudahkan perhitungan mediannya.